

    
      Navigation

      
        	
          index

        	
          modules |

        	Splinter 0.8.0 documentation 
 
      

    


    
      
          
            
  
Splinter

Splinter is an open source tool for testing web applications using Python.
It lets you automate browser actions, such as visiting URLs and interacting with their items.


Sample code

from splinter import Browser

with Browser() as browser:
    # Visit URL
    url = "http://www.google.com"
    browser.visit(url)
    browser.fill('q', 'splinter - python acceptance testing for web applications')
    # Find and click the 'search' button
    button = browser.find_by_name('btnG')
    # Interact with elements
    button.click()
    if browser.is_text_present('splinter.readthedocs.io'):
        print("Yes, the official website was found!")
    else:
        print("No, it wasn't found... We need to improve our SEO techniques")





Note: if you don’t provide any driver to Browser function, firefox will be used.




Features


	simple api

	multi webdrivers (chrome webdriver, firefox webdriver, phantomjs webdriver, zopetestbrowser, remote webdriver)

	css and xpath selectors

	support to iframe and alert

	execute javascript

	works with ajax and async javascript



what’s new in splinter?




Getting started


	Why use Splinter

	Installation

	Quick tutorial






Basic browsing and interactions


	Browser and navigation

	Finding elements

	Mouse interactions

	Interacting with elements and forms

	Verify the presence of texts and elements in a page, with matchers

	Cookies manipulation






JavaScript support


	Executing JavaScript






Walking on...


	Dealing with HTTP status code and exceptions

	Using HTTP proxies

	Interacting with iframes, alerts and prompts

	Full API documentation






Drivers


Browser based drivers

The following drivers open a browser to run your actions:


	Chrome WebDriver

	Firefox WebDriver

	Remote WebDriver






Headless drivers

The following drivers don’t open a browser to run your actions (but has its own dependencies, check the
specific docs for each driver):


	Chrome WebDriver

	Firefox WebDriver

	Phantomjs WebDriver

	zope.testbrowser

	django client

	flask client






Remote driver

The remote driver uses Selenium Remote to control a web browser on a remote
machine.


	Remote WebDriver










Get in touch and contribute


	Community

	Contribute

	Writing new drivers

	Setting up your splinter development environment







          

      

      

    


    
         Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	Splinter 0.8.0 documentation 
 
      

    


    
      
          
            

   Python Module Index


   
   s
   


   
     			

     		
       s	

     
       	[image: -]
       	
       splinter	
       

     
       	
       	
       splinter.browser	
       

     
       	
       	
       splinter.cookie_manager	
       

     
       	
       	
       splinter.driver	
       

     
       	
       	
       splinter.driver.djangoclient	
       

     
       	
       	
       splinter.driver.flaskclient	
       

     
       	
       	
       splinter.driver.webdriver.firefox	
       

     
       	
       	
       splinter.driver.webdriver.phantomjs	
       

     
       	
       	
       splinter.driver.zopetestbrowser	
       

     
       	
       	
       splinter.element_list	
       

     
       	
       	
       splinter.exceptions	
       

     
       	
       	
       splinter.request_handler.status_code	
       

   



          

      

      

    


    
         Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	Splinter 0.8.0 documentation 
 
      

    


    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 


A


  	
      
  	add() (splinter.cookie_manager.CookieManagerAPI method)
  


      
  	all() (splinter.cookie_manager.CookieManagerAPI method)
  


  

  	
      
  	attach_file() (splinter.driver.webdriver.chrome.WebDriver method)
  


      	
        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


  





B


  	
      
  	back() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


  

  	
      
  	Browser() (in module splinter.browser)
  


  





C


  	
      
  	check() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.ElementAPI method)
  


        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	checked (splinter.driver.ElementAPI attribute)
  


      
  	choose() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	clear() (splinter.driver.ElementAPI method)
  


      
  	click() (splinter.driver.ElementAPI method)
  


      
  	click_link_by_href() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	click_link_by_id() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


  

  	
      
  	click_link_by_partial_href() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	click_link_by_partial_text() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	click_link_by_text() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	code (splinter.request_handler.status_code.StatusCode attribute)
  


      
  	CookieManagerAPI (class in splinter.cookie_manager)
  


      
  	cookies (splinter.driver.DriverAPI attribute)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver attribute)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver attribute)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver attribute)
  


      


  





D


  	
      
  	delete() (splinter.cookie_manager.CookieManagerAPI method)
  


      
  	DriverAPI (class in splinter.driver)
  


  

  	
      
  	DriverNotFoundError (class in splinter.exceptions)
  


  





E


  	
      
  	ElementAPI (class in splinter.driver)
  


      
  	ElementDoesNotExist (class in splinter.exceptions)
  


      
  	ElementList (class in splinter.element_list)
  


  

  	
      
  	evaluate_script() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	execute_script() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


  





F


  	
      
  	fill() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.ElementAPI method)
  


        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	fill_form() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	find_by_css() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	find_by_id() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	find_by_name() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	find_by_tag() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	find_by_text() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	find_by_value() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	find_by_xpath() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


  

  	
      
  	find_link_by_href() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	find_link_by_partial_href() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	find_link_by_partial_text() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	find_link_by_text() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	find_option_by_text() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	find_option_by_value() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	first (splinter.element_list.ElementList attribute)
  


      
  	forward() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


  





G


  	
      
  	get_alert() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


  

  	
      
  	get_iframe() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


  





H


  	
      
  	has_class() (splinter.driver.ElementAPI method)
  


  

  	
      
  	html (splinter.driver.DriverAPI attribute)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver attribute)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver attribute)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver attribute)
  


      


  





I


  	
      
  	is_element_not_present_by_css() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	is_element_not_present_by_id() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	is_element_not_present_by_name() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	is_element_not_present_by_tag() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	is_element_not_present_by_text() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	is_element_not_present_by_value() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	is_element_not_present_by_xpath() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	is_element_present_by_css() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	is_element_present_by_id() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


  

  	
      
  	is_element_present_by_name() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	is_element_present_by_tag() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	is_element_present_by_text() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	is_element_present_by_value() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	is_element_present_by_xpath() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	is_empty() (splinter.element_list.ElementList method)
  


      
  	is_success() (splinter.request_handler.status_code.StatusCode method)
  


      
  	is_text_present() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


  





L


  	
      
  	last (splinter.element_list.ElementList attribute)
  


  





M


  	
      
  	mouse_out() (splinter.driver.ElementAPI method)
  


  

  	
      
  	mouse_over() (splinter.driver.ElementAPI method)
  


  





Q


  	
      
  	quit() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


  





R


  	
      
  	reason (splinter.request_handler.status_code.StatusCode attribute)
  


  

  	
      
  	reload() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


  





S


  	
      
  	screenshot() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	select() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.ElementAPI method)
  


        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


      
  	splinter.browser (module)
  


      
  	splinter.cookie_manager (module)
  


      
  	splinter.driver (module)
  


      
  	splinter.driver.djangoclient (module)
  


      
  	splinter.driver.flaskclient (module)
  


  

  	
      
  	splinter.driver.webdriver.firefox (module)
  


      
  	splinter.driver.webdriver.phantomjs (module)
  


      
  	splinter.driver.zopetestbrowser (module)
  


      
  	splinter.element_list (module)
  


      
  	splinter.exceptions (module)
  


      
  	splinter.request_handler.status_code (module)
  


      
  	StatusCode (class in splinter.request_handler.status_code)
  


  





T


  	
      
  	text (splinter.driver.ElementAPI attribute)
  


      
  	title (splinter.driver.DriverAPI attribute)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver attribute)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver attribute)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver attribute)
  


      


  

  	
      
  	type() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.ElementAPI method)
  


        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


  





U


  	
      
  	uncheck() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.ElementAPI method)
  


        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


  

  	
      
  	url (splinter.driver.DriverAPI attribute)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver attribute)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver attribute)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver attribute)
  


      


  





V


  	
      
  	value (splinter.driver.ElementAPI attribute)
  


      
  	visible (splinter.driver.ElementAPI attribute)
  


  

  	
      
  	visit() (splinter.driver.DriverAPI method)
  


      	
        
  	(splinter.driver.webdriver.chrome.WebDriver method)
  


        
  	(splinter.driver.webdriver.firefox.WebDriver method)
  


        
  	(splinter.driver.webdriver.phantomjs.WebDriver method)
  


      


  





W


  	
      
  	WebDriver (class in splinter.driver.webdriver.chrome)
  


      	
        
  	(class in splinter.driver.webdriver.firefox)
  


        
  	(class in splinter.driver.webdriver.phantomjs)
  


      


  







          

      

      

    


    
         Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  news/0.4.10.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.4.10?


This version does not work with firefox 17.



Improvements



		remove deprecated driver names


		update lxml version


		update selenium version to 2.29








Bugfix



		set user-agent for request_handler requests


		update zope.testbrowser documentation regarding dependencies (cssselect)


		fix URL checking in request_handler (support for HTTPS)











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.3.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
what’s new in splinter 0.3?



Features



		support for browser extensions on Firefox driver


		support for Firefox profiles on Firefox driver


		support for mouse over and mouse out on Chrome driver


		support for finding and clicking links by partial text
and href


		support for finding by value








Documentation improvements



		complete API reference


		instructions on new drivers creation








Backward incompatible changes



		changes on cookies manipulation. Affects only who used cookies.delete
passing the cookie keyword.





Before version 0.3:


>>> driver.cookies.delete(cookie='whatever')






Now:


>>> driver.cookies.delete('whatever')









Bugfixes



		Fixed cookies behavior on Chrome driver (it was impossible to delete one cookie, Chrome was always deleting all cookies)











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

contribute/writing-new-drivers.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
writing new splinter drivers


The process of creating a new splinter browser is really simple: you just need to implement a
TestCase (extending tests.base. BaseBrowserTests) and make all tests green.


Here is an example: imagine you’re creating the Columbia driver, you would add the test_columbia.py
file containing some code like this:


from splinter import Browser
from tests.base import BaseBrowserTests

class ColumbiaTest(BaseBrowserTests):

    @classmethod
    def setUpClass(cls):
        cls.browser = Browser('columbia')

    # ...






Now, to make the test green, you need to implement methods provided by the
DriverAPI [https://github.com/cobrateam/splinter/blob/master/splinter/driver/__init__.py#L10] and
the ElementAPI [https://github.com/cobrateam/splinter/blob/master/splinter/driver/__init__.py#L172].


Use make test to run the tests:


$ make test which=tests/test_columbia.py










          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

contribute/setting-up-your-development-environment.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Setting up you splinter development environment


Setting up a splinter development environment is a really easy task, you need to make sure you have some
basic development tools in your machine, you can setup the entire environment with just one command.



Basic development tools


Let’s deal with those tools first.



Mac OS


If you’re a Mac OS user, you just need to install XCode, which can be downloaded
from Mac App Store (on Mac OS X Lion) or from
Apple website [http://connect.apple.com/cgi-bin/WebObjects/MemberSite.woa/wa/getSoftware?bundleID=20792].





Linux


If you are running a Linux in your computer, you need to install some basic development libraries
and headers. On Ubuntu, you can easily install all of them using apt-get:


$ [sudo] apt-get install build-essential python-dev libxml2-dev libxslt1-dev









PIP and virtualenv


Make sure you have pip installed. We manage all splinter development dependencies with
PIP [http://pip-installer.org], so you should use it for too.


And please, for the sake of a nice development environment, use virtualenv [http://virtualenv.org].
If you aren’t using it yet, start now. :)





Dependencies


Once you had all development libraries installed for you OS, just install all splinter development dependencies with
make:


$ [sudo] make dependencies






Note: You will need sudo only if you aren’t using virtualenv (which means you’re a really bad guy - no donuts for you).


Also make sure you have properly configured your Chrome driver.










          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

matchers.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Matchers


When working with AJAX and asynchronous JavaScript, it’s common to have
elements which are not present in the HTML code (they are created with
JavaScript, dynamically). In this case you can use the methods
is_element_present and is_text_present to check the existence of an
element or text – Splinter will load the HTML and JavaScript in the browser
and the check will be performed before processing JavaScript.


There is also the optional argument wait_time (given in seconds) – it’s a
timeout: if the verification method gets True it will return the result
(even if the wait_time is not over), if it doesn’t get True, the
method will wait until the wait_time is over (so it’ll return the result).



Checking the presence of text


The method is_text_present is responsible for checking if a text is present
in the page content. It returns True or False.


browser = Browser()
browser.visit('https://splinter.readthedocs.io/')
browser.is_text_present('splinter') # True
browser.is_text_present('splinter', wait_time=10) # True, using wait_time
browser.is_text_present('text not present') # False






There’s also a method to check if the text is not present:
is_text_not_present. It works the same way but returns True if the text
is not present.


browser.is_text_not_present('text not present') # True
browser.is_text_not_present('text not present', wait_time=10) # True, using wait_time
browser.is_text_not_present('splinter') # False









Checking the presence of elements


Splinter provides 6 methods to check the presence of elements in the page, one
for each selector type: css, xpath, tag, name, id,
value, text. Examples:


browser.is_element_present_by_css('h1')
browser.is_element_present_by_xpath('//h1')
browser.is_element_present_by_tag('h1')
browser.is_element_present_by_name('name')
browser.is_element_present_by_text('Hello World!')
browser.is_element_present_by_id('firstheader')
browser.is_element_present_by_value('query')
browser.is_element_present_by_value('query', wait_time=10) # using wait_time






As expected, these methods returns True if the element is present and
False if it is not present.


There’s also the negative forms of these methods, as in is_text_present:


browser.is_element_not_present_by_css('h6')
browser.is_element_not_present_by_xpath('//h6')
browser.is_element_not_present_by_tag('h6')
browser.is_element_not_present_by_name('unexisting-name')
browser.is_element_not_present_by_text('Not here :(')
browser.is_element_not_present_by_id('unexisting-header')
browser.is_element_not_present_by_id('unexisting-header', wait_time=10) # using wait_time












          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.5.4.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.5.4?



Improvement



		implemented browser.cookies.all() - #240.








Bugfix



		browser.type() works with textarea - #216.











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

search.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.5.0.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.5.0?



Features



		support for phantomjs web driver.


		zopetestdriver support is_text_present.








Bugfix



		fixed an unicode issue with setup.py.











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

screenshot.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Taking screenshots


Splinter doesn’t support taking screenshots by itself, to take screenshots you must to call the driver’s take_screenshot method:


browser = Browser()
browser.driver.save_screenshot('your_screenshot.png')










          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.5.5.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.5.5?



Improvements



		Handle “internet explorer” as remote driver.


		implemented get_screenshot_as_file.


		fill_form now supports custom field types.


		More robust find_link_by_partial_text.


		support for selenium 2.39.0.


		support for zope.testbrowser 4.0.4.











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

elements-in-the-page.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Interacting with elements in the page



Get value of an element


In order to retrieve an element’s value, use the value property:


browser.find_by_css('h1').first.value






or


element = browser.find_by_css('h1').first
element.value









Clicking links


You can click in links. To click in links by href, partial href, text or partial text you can use this.
IMPORTANT: These methods return the first element always.


browser.click_link_by_href('http://www.the_site.com/my_link')






or


browser.click_link_by_partial_href('my_link')






or


browser.click_link_by_text('my link')






or


browser.click_link_by_partial_text('part of link text')






or


browser.click_link_by_id('link_id')









Clicking buttons


You can click in buttons. Splinter follows any redirects, and submits forms associated with buttons.


browser.find_by_name('send').first.click()






or


browser.find_link_by_text('my link').first.click()









Interacting with forms


browser.fill('query', 'my name')
browser.attach_file('file', '/path/to/file/somefile.jpg')
browser.choose('some-radio', 'radio-value')
browser.check('some-check')
browser.uncheck('some-check')
browser.select('uf', 'rj')






To trigger JavaScript events, like KeyDown or KeyUp, you can use the type method.


browser.type('type', 'typing text')






If you pass the argument slowly=True to the type method you can interact with the
page on every key pressed. Useful for testing field’s autocompletion (the browser
will wait until next iteration to type the subsequent key).


for key in browser.type('type', 'typing slowly', slowly=True):
    pass # make some assertion here with the key object :)






You can also use type and fill methods in an element:


browser.find_by_name('name').type('Steve Jobs', slowly=True)
browser.find_by_css('.city').fill('San Francisco')









Verifying if element is visible or invisible


To check if an element is visible or invisible, use the visible property. For instance:


browser.find_by_css('h1').first.visible






will be True if the element is visible, or False if it is invisible.





Verifying if element has a className


To check if an element has a className, use the has_class method. For instance:


browser.find_by_css('.content').first.has_class('content')









Interacting with elements through a ElementList object


Don’t you like to always use first when selecting an element for clicking, for example:


browser.find_by_css('a.my-website').first.click()






You can invoke any Element method on ElementList and it will be proxied to the first element of the list. So the two lines below are equivalent:


assert browser.find_by_css('a.banner').first.visible
assert browser.find_by_css('a.banner').visible












          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.7.5.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.7.5?



		Timeout settings for Firefox driver


		Remove default icognito mode in Chrome driver


		Make input a contro element in django, flask and zope.testbrowser









          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
splinter news


See below the changes for each splinter release.



		what’s new in splinter 0.8.0


		what’s new in splinter 0.7.7


		what’s new in splinter 0.7.6


		what’s new in splinter 0.7.5


		what’s new in splinter 0.7.4


		what’s new in splinter 0.7.3


		what’s new in splinter 0.7.2


		what’s new in splinter 0.7.1


		what’s new in splinter 0.7.0


		what’s new in splinter 0.6.0


		what’s new in splinter 0.5.5


		what’s new in splinter 0.5.4


		what’s new in splinter 0.5.3


		what’s new in splinter 0.5.2


		what’s new in splinter 0.5.0


		what’s new in splinter 0.4.10


		what’s new in splinter 0.4.9


		what’s new in splinter 0.4.8


		what’s new in splinter 0.4.7


		what’s new in splinter 0.4.4.1


		what’s new in splinter 0.4.4


		what’s new in splinter 0.4.3


		what’s new in splinter 0.4.2


		what’s new in splinter 0.4.1


		what’s new in splinter 0.4


		what’s new in splinter 0.3


		what’s new in splinter 0.2


		what’s new in splinter 0.1.1


		what’s new in splinter 0.1


		what’s new in splinter 0.0.3


		what’s new in splinter 0.0.2


		what’s new in splinter 0.0.1









          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.6.0.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.6.0?



Features



		support for django test client.











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

javascript.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Executing javascript


You can easily execute JavaScript, in drivers which support it:


browser.execute_script("$('body').empty()")






You can return the result of the script:


browser.evaluate_script("4+4") == 8










          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.5.3.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.5.3?



Improvement



		added kwargs to the Chrome driver constructor


		updated selenium to 2.33.0.








Bugfix



		fixed about:blank behaviour #233.











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

contribute.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
contribute



		Source hosted at GitHub [http://github.com/cobrateam/splinter]


		Report issues on GitHub Issues [http://github.com/cobrateam/splinter/issues]





Pull requests are very welcome! Make sure your patches are well tested and documented :)


If you want to add any new driver, check out our docs for creating new splinter drivers.



running the tests


If you are using a virtualenv, all you need is:


$ make test






You can also specify one or more test files to run:


$ make test which=tests/test_webdriver_firefox.py,tests/test_request_handler.py






You can pass which test files you want to run, separated by comma, to the which variable.





some conventions we like


You can feel free to create and pull request new branches to Splinter project.
When adding support for new drivers, we usually work in a separated branch.





writing docs


Splinter documentation is written using Sphinx [http://sphinx.pocoo.org/], which uses RST [http://docutils.sourceforge.net/rst.html]. Check these tools docs to learn how to write docs for Splinter.





building docs


In order to build the HTML docs, just run on terminal:


$ make doc












          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

community.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
community



mailing list



		splinter-users [http://groups.google.com/group/splinter-users] - list for help and announcements


		splinter-developers [http://groups.google.com/group/splinter-developers] - where the developers of splinter itself discuss new features








irc channel


#cobrateam channel on irc.freenode.net - chat with other splinter users and developers





ticket system


ticket system [https://github.com/cobrateam/splinter/issues] - report bugs and make feature requests





splinter around the world



Projects using splinter



		salad [https://github.com/salad/salad]: splinter and lettuce integration








Blog posts



		Django Full Stack Testing and BDD with Lettuce and Splinter [http://cilliano.com/blog/2011/02/07/django-bdd-with-lettuce-and-splinter/]


		Splinter: Python tool for acceptance tests on web applications [http://f.souza.cc/2011/05/splinter-python-tool-for-acceptance-tests-on-web-applications/]








Slides and talks



		[pt-br] Os complicados testes de interface [http://www.slideshare.net/franciscosouza/os-complicados-testes-de-interface]


		[pt-br] Testes de aceitação com Lettuce e Splinter [http://www.slideshare.net/franciscosouza/testes-de-aceitao-com-lettuce-e-splinter]













          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

browser.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Browser


To use splinter you need create a Browser instance:


from splinter import Browser
browser = Browser()






Or, you can use it by a context manager, through the with statement:


from splinter import Browser
with Browser() as b:
    # stuff using the browser






This last example will create a new browser window and close it when the cursor
reach the code outside the with statement, automatically.


splinter support three drivers: chrome, firefox and zopetestbrowser


browser = Browser('chrome')
browser = Browser('firefox')
browser = Browser('zope.testbrowser')







Navigating with Browser.visit


You can use the visit method to navigate to other pages:


browser.visit('http://cobrateam.info')






The visit method takes only a single parameter - the url to be visited.


You can visit a site protected with basic HTTP authentication by providing the
username and password in the url.


browser.visit('http://username:password@cobrateam.info/protected')









Managing Windows


You can manage multiple windows (such as popups) through the windows object:


browser.windows              # all open windows
browser.windows[0]           # the first window
browser.windows[window_name] # the window_name window
browser.windows.current      # the current window
browser.windows.current = browser.windows[3]  # set current window to window 3

window = browser.windows[0]
window.is_current            # boolean - whether window is current active window
window.is_current = True     # set this window to be current window
window.next                  # the next window
window.prev                  # the previous window
window.close()               # close this window
window.close_others()        # close all windows except this one






This window management interface is not compatible with the undocumented interface
exposed in v0.6.0 and earlier.





Reload a page


You can reload a page using reload method:


browser.reload()









Navigate through the history


You can back and forward on your browsing history using back and forward methods:


browser.visit('http://cobrateam.info')
browser.visit('https://splinter.readthedocs.io')
browser.back()
browser.forward()









Browser.title


You can get the title of the visited page using the title attribute:


browser.title









Verifying page content with Browser.html


You can use the html attribute to get the html content of the visited page:


browser.html









Verifying page url with Browser.url


The visited page’s url can be accessed by the url attribute:


browser.url









Changing Browser User-Agent


You can pass User-Agent on Browser instantiation.


b = Browser(user_agent="Mozilla/5.0 (iPhone; U; CPU like Mac OS X; en)")












          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

why.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Why use Splinter?


Splinter is an abstraction layer on top of existing browser automation tools
such as Selenium [http://seleniumhq.org], PhantomJS [http://phantomjs.org] and zope.testbrowser [https://launchpad.net/zope.testbrowser]. It has a high-level API that makes it easy to write automated tests of web applications.


For example, to fill out a form field with Splinter:


browser.fill('username', 'janedoe')






In Selenium, the equivalent code would be:


elem = browser.find_element.by_name('username')
elem.send_keys('janedoe')






Because Splinter is an abstraction layer, it supports multiple web automation
backends. With Splinter, you can use the same test code to do browser-based
testing with Selenium as the backend and “headless” testing (no GUI) with
zope.testbrowser as the backend.


Splinter has drivers for Chrome and Firefox for  browser-based testing, and zope.testbrowser and PhantomJS for
headless testing.






          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

http-proxies.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Using HTTP Proxies


Unauthenticated proxies are simple, you need only configure
the browser with the hostname and port.


Authenticated proxies are rather more complicated, (see
RFC2617 [http://www.ietf.org/rfc/rfc2617.txt])



Using an unauthenticated HTTP proxy with Firefox


profile = {
    'network.proxy.http': YOUR_PROXY_SERVER_HOST,
    'network.proxy.http_port': YOUR_PROXY_SERVER_PORT,
    'network.proxy.ssl': YOUR_PROXY_SERVER_HOST,
    'network.proxy.ssl_port': YOUR_PROXY_SERVER_PORT,
    'network.proxy.type': 1
}
self.browser = Browser(self.browser_type, profile_preferences=profile)









Authenticated HTTP proxy with Firefox


If you have access to the browser window, then the same technique will
work for an authenticated proxy, but you will have to type the username
and password in manually.


If this is not possible, for example on a remote CI server, then it is
not currently clear how to do this. This document will be updated when
more information is known. If you can help, please follow up on
https://github.com/cobrateam/splinter/issues/359.








          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

iframes-and-alerts.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Frames, alerts and prompts



Using iframes


You can use the get_iframe method and the with statement to interact with iframes. You can pass the iframe’s name, id, or index to get_iframe.


with browser.get_iframe('iframemodal') as iframe:
    iframe.do_stuff()









Handling alerts and prompts



Chrome support for alerts and prompts is new in Splinter 0.4.



IMPORTANT: Only webdrivers (Firefox and Chrome) has support for alerts and prompts.


You can deal with alerts and prompts using the get_alert method.


alert = browser.get_alert()
alert.text
alert.accept()
alert.dismiss()






In case of prompts, you can answer it using the fill_with method.


prompt = browser.get_alert()
prompt.text
prompt.fill_with('text')
prompt.accept()
prompt.dismiss()






You can use the with statement to interacte with both alerts and prompts too.


with browser.get_alert() as alert:
    alert.do_stuff()






If there’s not any prompt or alert, get_alert will return None.
Remember to always use at least one of the alert/prompt ending methods (accept and dismiss).
Otherwise your browser instance will be frozen until you accept or dismiss the alert/prompt correctly.








          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.0.3.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
what’s new in splinter 0.0.3?



Features



		now splinter use selenium 2.0b3 for firefox and chrome driver


		zope.testbrowser.browser dependency is not required


		new method for reload a page


		find_by_css_selector is now deprecated, use find_by_css instead


		deprecated methods now throw “DeprecationWarning”


		methods for verify if element or text is present


		find_by methods wait for element


		added support for iframes and alerts


		added more specific exception messages for not found elements








Backward incompatible changes



		you should update your selenium to 2.0b3 version











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

cookies.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Cookies manipulation


It is possible to manipulate cookies using the cookies attribute from a
Browser instance. The cookies attribute is a instance of a CookieManager
class that manipulates cookies, like adding and deleting them.



Create cookie


To add a cookie use the add method:


browser.cookies.add({'whatever': 'and ever'})









Retrieve all cookies


To retrieve all cookies use the all method:


browser.cookies.all()









Delete a cookie


You can delete one or more cookies with the delete method:


browser.cookies.delete('mwahahahaha')  # deletes the cookie 'mwahahahaha'
browser.cookies.delete('whatever', 'wherever')  # deletes two cookies









Delete all cookies


You can also delete all cookies: just call the delete method without any
parameters:


browser.cookies.delete()  # deletes all cookies






For more details check the API reference of the
CookieManager class.








          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

http-status-code-and-exception.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Dealing with HTTP status code and exceptions



Dealing with HTTP status code


It’s also possible to check which HTTP status code a browser.visit gets. You can use status_code.is_success to do the work
for you or you can compare the status code directly:


browser.visit('http://cobrateam.info')
browser.status_code.is_success() # True
# or
browser.status_code == 200 # True
# or
browser.status_code.code # 200






The difference between those methods is that if you get a redirect (or something that is not an HTTP error),
status_code.is_success will consider your response as successfully. The numeric status code can be accessed via
status_code.code.





Handling HTTP exceptions


Whenever you use the visit method, Splinter will check if the response is success or not, and if not, it will raise an
HttpResponseError exception. But don’t worry, you can easily catch it:


try:
    browser.visit('http://cobrateam.info/i-want-cookies')
except HttpResponseError, e:
    print "Oops, I failed with the status code %s and reason %s" % (e.status_code, e.reason)







Note: status_code and this HTTP exception handling is available only for selenium webdriver









          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.4.8.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.4.8?



Features



		html and outer_html property on Element


		profile_preferences option to Firefox driver


		Support for handling browser pop-up windows for Firefox/Chrome drivers.











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.4.4.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.4.4?



Features



		Updated selenium to 2.17


		Method to change user-agent


		dismiss method in alert element








Bugfixes



		request_handler now works with querystring











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.4.7.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.4.7?



Features



		has_class method on Element


		fix documentation








Bugfixes and improvements



		improving find_by_css method to use native methods from drivers











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

install.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Install guide



Install Python


In order to install Splinter, make sure Python is installed. Note: only Python 2.7+ is supported.


Download Python from http://www.python.org. If you’re using Linux or Mac OS X, it is probably already installed.





Install splinter


Basically, there are two ways to install Splinter:



Install a stable release


If you’re interested on an official and almost bug-free version, just run from the Terminal:


$ [sudo] pip install splinter









Install under-development source-code


Otherwise, if you want Splinter’s latest-and-greatest features and aren’t afraid of running under development code, run:


$ git clone git://github.com/cobrateam/splinter.git
$ cd splinter
$ [sudo] python setup.py install






Notes:




		
		make sure you have already set up your development environment.








		
		in this second case, make sure Git [http://git-scm.com/]  is installed.








		
		in order to use Chrome webdriver, you need to setup Google Chrome properly.























          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

drivers/flask.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Flask client


To use the flask driver, you need to install Flask [https://pypi.python.org/pypi/Flask],
lxml [https://pypi.python.org/pypi/lxml] and cssselect [http://pypi.python.org/pypi/cssselect].
You can install all of them in one step by running:


$ pip install splinter[flask]







Using Flask client


To use the flask driver, you’ll need to pass the string flask and an app instances via the
app keyword argument when you create the Browser instance:


from splinter import Browser
browser = Browser('flask', app=app)






Note: if you don’t provide any driver to Browser function, firefox will be used.





API docs








          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.5.2.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.5.2?



Improvements



		support password field.











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

mouse-interaction.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Mouse interactions



Note: Most mouse interaction currently works only on Chrome driver and Firefox 27.0.1.



Splinter provides some methods for mouse interactions with elements in the page.
This feature is useful to test if an element appears on mouse over and
disappears on mouse out (eg.: subitems of a menu).


It’s also possible to send a click, double click or right click to the element.


Here is a simple example: imagine you have this jQuery [http://jquery.com]
event for mouse over and out:


$('.menu-links').mouseover(function(){
    $(this).find('.subitem').show();
});

$('.menu-links').mouseout(function(){
    $(this).find('.subitem').hide();
});






You can use Splinter to fire the event programatically:


browser.find_by_css('.menu-links').mouse_over()
# Code to check if the subitem is visible...
browser.find_by_css('.menu-links').mouse_out()






The methods available for mouse interactions are:



mouse_over


Puts the mouse above the element. Example:


browser.find_by_tag('h1').mouse_over()









mouse_out


Puts the mouse out of the element. Example:


browser.find_by_tag('h1').mouse_out()









click


Clicks on the element. Example:


browser.find_by_tag('h1').click()









double_click


Double-clicks on the element. Example:


browser.find_by_tag('h1').double_click()









right_click


Right-clicks on the element. Example:


browser.find_by_tag('h1').right_click()









drag_and_drop


Yes, you can drag an element and drop it to another element! The example below
drags the <h1>...</h1> element and drop it to a container element
(identified by a CSS class).


draggable = browser.find_by_tag('h1')
target = browser.find_by_css('.container')
draggable.drag_and_drop(target)












          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

drivers/phantomjs.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Phantomjs WebDriver


PhantomJS is a headless WebKit scriptable with a JavaScript API, to use the driver first you must
install [http://phantomjs.org/download.html] it in your machine.
The Phantomjs WebDriver is provided by Selenium 2.0, thus you need to install Selenium 2.0 via pip:


$ [sudo] pip install selenium







Using Phantomjs WebDriver


To use the Phantomjs driver, all you need to do is pass the string phantomjs when you create
the Browser instance:


from splinter import Browser
browser = Browser('phantomjs')






Note: if you don’t provide any driver to Browser function, firefox will be used.


PhantomJS can also be used from a custom path. To do this pass the executable path as a dictionary to the **kwargs argument. The dictionary should be set up with executable_path as the key and the value set to the path to the executable file.


from splinter import Browser
executable_path = {'executable_path':'</path/to/phantomjs>'}

browser = Browser('phantomjs', **executable_path)









API docs



		
class splinter.driver.webdriver.phantomjs.WebDriver(user_agent=None, load_images=True, desired_capabilities=None, wait_time=2, custom_headers={}, **kwargs)


		
		
attach_file(name, value)


		Fill the field identified by name with the content specified by value.









		
back()


		Back to the last URL in the browsing history.


If there is no URL to back, this method does nothing.









		
check(name)


		Checks a checkbox by its name.


Example:


>>> browser.check("agree-with-terms")






If you call browser.check n times, the checkbox keeps checked, it never get unchecked.


To unckech a checkbox, take a look in the uncheck method.









		
choose(name, value)


		Chooses a value in a radio buttons group.


Suppose you have the two radio buttons in a page, with the name gender and values ‘F’ and ‘M’.
If you use the choose method the following way:


>>> browser.choose('gender', 'F')






Then you’re choosing the female gender.









		
click_link_by_href(href)


		Clicks in a link by its href attribute.









		
click_link_by_id(id)


		Clicks in a link by id.









		
click_link_by_partial_href(partial_href)


		Clicks in a link by looking for partial content of href attribute.









		
click_link_by_partial_text(partial_text)


		Clicks in a link by partial content of its text.









		
click_link_by_text(text)


		Clicks in a link by its text.









		
cookies


		A CookieManager instance.


For more details, check the cookies manipulation section.









		
evaluate_script(script)


		Similar to execute_script method.


Executes javascript in the browser and returns the value of the expression.



		e.g.: ::


		>>> assert 4 == browser.evaluate_script('2 + 2')



















		
execute_script(script)


		Executes a given JavaScript in the browser.



		e.g.: ::


		>>> browser.execute_script('document.getElementById("body").innerHTML = "<p>Hello world!</p>"')



















		
fill(name, value)


		Fill the field identified by name with the content specified by value.









		
fill_form(field_values, form_id=None, name=None)


		Fill the fields identified by name with the content specified by value in a dict.


Currently, fill_form supports the following fields: text, password, textarea, checkbox,
radio and select.


Checkboxes should be specified as a boolean in the dict.









		
find_by_css(css_selector)


		Returns an instance of ElementList,
using a CSS selector to query the current page content.









		
find_by_id(id)


		Finds an element in current page by its id.


Even when only one element is find, this method returns an instance of
ElementList









		
find_by_name(name)


		Finds elements in current page by their name.


Returns an instance of ElementList.









		
find_by_tag(tag)


		Find all elements of a given tag in current page.


Returns an instance of ElementList









		
find_by_text(text)


		Finds elements in current page by their text.


Returns an instance of ElementList









		
find_by_value(value)


		Finds elements in current page by their value.


Returns an instance of ElementList









		
find_by_xpath(xpath, original_find=None, original_query=None)


		Returns an instance of ElementList,
using a xpath selector to query the current page content.









		
find_link_by_href(href)


		Find all elements of a given tag in current page.


Returns an instance of ElementList









		
find_link_by_partial_href(partial_href)


		Find links by looking for a partial str in their href attribute.


Returns an instance of ElementList









		
find_link_by_partial_text(partial_text)


		Find links by looking for a partial str in their text.


Returns an instance of ElementList









		
find_link_by_text(text)


		Find links querying for their text.


Returns an instance of ElementList









		
find_option_by_text(text)


		Finds <option> elements by their text.


Returns an instance of ElementList









		
find_option_by_value(value)


		Finds <option> elements by their value.


Returns an instance of ElementList









		
forward()


		Forward to the next URL in the browsing history.


If there is no URL to forward, this method does nothing.









		
get_alert()


		Changes the context for working with alerts and prompts.


For more details, check the docs about iframes, alerts and prompts









		
get_iframe(*args, **kwds)


		Changes the context for working with iframes.


For more details, check the docs about iframes, alerts and prompts









		
html


		Source of current page.









		
is_element_not_present_by_css(css_selector, wait_time=None)


		Verify if the element is not present in the current page by css, and wait the specified time
in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_id(id, wait_time=None)


		Verify if the element is present in the current page by id,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_name(name, wait_time=None)


		Verify if the element is not present in the current page by name,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_tag(tag, wait_time=None)


		Verify if the element is not present in the current page by tag,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_text(text, wait_time=None)


		Verify if the element is not present in the current page by text,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_value(value, wait_time=None)


		Verify if the element is not present in the current page by value,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_xpath(xpath, wait_time=None)


		Verify if the element is not present in the current page by xpath,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_present_by_css(css_selector, wait_time=None)


		Verify if the element is present in the current page by css, and wait the specified
time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_id(id, wait_time=None)


		Verify if the element is present in the current page by id,
and wait the specified time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_name(name, wait_time=None)


		Verify if the element is present in the current page by name,
and wait the specified time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_tag(tag, wait_time=None)


		Verify if the element is present in the current page by tag,
and wait the specified time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_text(text, wait_time=None)


		Verify if the element is present in the current page by text,
and wait the specified time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_value(value, wait_time=None)


		Verify if the element is present in the current page by value,
and wait the specified time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_xpath(xpath, wait_time=None)


		Verify if the element is present in the current page by xpath, and wait the specified
time in wait_time.


Returns True if the element is present and False if is not present.









		
is_text_present(text, wait_time=None)


		Searchs for text in the browser and wait the seconds specified in wait_time.


Returns True if finds a match for the text and False if not.









		
quit()


		Quits the browser, closing its windows (if it has one).


After quit the browser, you can’t use it anymore.









		
reload()


		Revisits the current URL









		
screenshot(name=None, suffix='.png')


		Takes a screenshot of the current page and saves it locally.









		
select(name, value)


		Selects an <option> element in an <select> element using the name of the <select> and
the value of the <option>.


Example:


>>> browser.select("state", "NY")













		
title


		Title of current page.









		
type(name, value, slowly=False)


		Types the value in the field identified by name.


It’s useful to test javascript events like keyPress, keyUp, keyDown, etc.


If slowly is True, this function returns an iterator which will type one character per iteration.









		
uncheck(name)


		Unchecks a checkbox by its name.


Example:


>>> browser.uncheck("send-me-emails")






If you call brower.uncheck n times, the checkbox keeps unchecked, it never get checked.


To check a checkbox, take a look in the check method.









		
url


		URL of current page.









		
visit(url)


		Visits a given URL.


The url parameter is a string.




















          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.7.6.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.7.6?



		fix fill_form for select element.


		support chrome headless mode









          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

tutorial.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Splinter Tutorial


Before starting, make sure Splinter is installed


This tutorial provides a simple example, teaching step by step how to:



		search for splinter - python acceptance testing for web applications' in google.com, and


		find if splinter official website is listed among the search results






Create a Browser instance


First of all, import Browser class and instantiate it.


from splinter import Browser
browser = Browser()






Note: if you don’t provide any driver to Browser function, firefox will be used.





Visit Google website


Visit any website using the browser.visit method. Let’s go to Google search page:


browser.visit('http://google.com')









Input search text


After a page is loaded, you can perform actions, such as clicking, filling text input, checking radio and checkbox. Let’s fill Google’s search field with splinter - python acceptance testing for web applications:


browser.fill('q', 'splinter - python acceptance testing for web applications')









Press the search button


Tell Splinter which button should be pressed. A button - or any other element - can be identified using its css, xpath, id, tag or name.


In order to find Google’s search button, do:


button = browser.find_by_name('btnG')






Note that this btnG was found looking at Google’s page source code.


With the button in hands, we can then press it:


button.click()






Note: Both steps presented above could be joined in a single line, such as:


browser.find_by_name('btnG').click()









Find out that Splinter official website is in the search results


After pressing the button, you can check if Splinter official website is among the search responses. This can be done like this:


if browser.is_text_present('splinter.readthedocs.io'):
    print "Yes, found it! :)"
else:
    print "No, didn't find it :("






In this case, we are just printing something. You might use assertions, if you’re writing tests.





Close the browser


When you’ve finished testing, close your browser using browser.quit:


browser.quit()









All together


Finally, the source code will be:


from splinter import Browser

browser = Browser()
browser.visit('http://google.com')
browser.fill('q', 'splinter - python acceptance testing for web applications')
browser.find_by_name('btnG').click()

if browser.is_text_present('splinter.readthedocs.io'):
    print "Yes, the official website was found!"
else:
    print "No, it wasn't found... We need to improve our SEO techniques"

browser.quit()












          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

drivers/remote.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Remote WebDriver


Remote WebDriver is provided by Selenium2. To use it, you need to install
Selenium2 via pip:


$ [sudo] pip install selenium







Setting up the Remote WebDriver


To use the remote web driver, you need to have access to a Selenium remote
webdriver server. Setting up one of these servers is beyond the scope of this
document. However, some companies provide access to a Selenium Grid [https://code.google.com/p/selenium/wiki/Grid2] as a service.





Using the Remote WebDriver


To use the Remote WebDriver, you need to pass driver_name="remote"
and url=<remote server url> when you create the Browser instance.


You can also pass additional arguments that
correspond to Selenium DesiredCapabilities [https://code.google.com/p/selenium/wiki/DesiredCapabilities] arguments.


Here is an example that uses Sauce Labs [https://saucelabs.com] (a company that provides Selenium
remote webdriver servers as a service) to request an Internet Explorer 9
browser instance running on Windows 7.


# Specify the server URL
remote_server_url = 'http://YOUR_SAUCE_USERNAME:YOUR_SAUCE_ACCESS_KEY@ondemand.saucelabs.com:80/wd/hub'

with Browser(driver_name="remote",
             url=remote_server_url,
             browser='internetexplorer',
             platform="Windows 7",
             version="9",
             name="Test of IE 9 on WINDOWS") as browser:
    print("Link to job: https://saucelabs.com/jobs/{}".format(
          browser.driver.session_id))
    browser.visit("https://splinter.readthedocs.io")
    browser.find_link_by_text('documentation').first.click()












          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.4.9.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.4.9?


This version does not works with firefox 17.



Features



		support for selenium remote web driver.








Bugfix



		is_text_present and is_text_not_present works with html without body.


		fixed zopetestdriver attach_file behaviour.











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

finding.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Finding elements


Splinter provides 6 methods for finding elements in the page, one for each
selector type: css, xpath, tag, name, id, value,
text.
Examples:


browser.find_by_css('h1')
browser.find_by_xpath('//h1')
browser.find_by_tag('h1')
browser.find_by_name('name')
browser.find_by_text('Hello World!')
browser.find_by_id('firstheader')
browser.find_by_value('query')






Each of these methods returns a list with the found elements. You can get the
first found element with the first shortcut:


first_found = browser.find_by_name('name').first






There’s also the last shortcut – obviously, it returns the last found
element:


last_found = browser.find_by_name('name').last







Get element using index


You also can use an index to get the desired element in the list of found
elements:


second_found = browser.find_by_name('name')[1]









All elements and find_by_id


A web page should have only one id, so the find_by_id method returns always
a list with just one element.





Finding links


If you need to find the links in a page, you can use the methods
find_link_by_text, find_link_by_partial_text, find_link_by_href or
find_link_by_partial_href. Examples:


links_found = browser.find_link_by_text('Link for Example.com')
links_found = browser.find_link_by_partial_text('for Example')
links_found = browser.find_link_by_href('http://example.com')
links_found = browser.find_link_by_partial_href('example')






As the other find_* methods, these returns a list of all found elements.


You also can search for links using other selector types with the methods
find_by_css, find_by_xpath, find_by_tag, find_by_name,
find_by_value and find_by_id.





Chaining find of elements


Finding methods are chainable, so you can find the descendants of a previously
found element.


divs = browser.find_by_tag("div")
within_elements = divs.first.find_by_name("name")









ElementDoesNotExist exception


If an element is not found, the find_* methods return an empty list. But
if you try to access an element in this list, the method will raise the
splinter.exceptions.ElementDoesNotExist exception.








          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

drivers/django.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  To use the django driver, you need to install django [http://pypi.python.org/pypi/django],
lxml [https://pypi.python.org/pypi/lxml] and cssselect [http://pypi.python.org/pypi/cssselect].
You can install all of them in one step by running:


$ pip install splinter[django]







Using django client


To use the django driver, all you need to do is pass the string django when you create
the Browser instance:


from splinter import Browser
browser = Browser('django')






Note: if you don’t provide any driver to Browser function, firefox will be used.





API docs






          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.4.1.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.4.1?



Features



		Partial Windows support


		Internet Explorer driver


		Added type and fill methods to ElementAPI.


		Updated selenium to 2.13.1











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

drivers/installing_pyqt.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Installing PyQt4


In order to use Spynner driver, you need to install PyQt4. PyQt4 has a few dependencies,
follow the steps below to get PyQt4 and its dependencies running on your system.



Install Qt4


The biggest and most important PyQt4 dependency is the Qt4 itself.
You can download it from its official website [http://qt.nokia.com/downloads/] and
install with a nice and friendly wizard.





Install SIP


Another PyQt4 dependency is SIP [http://www.riverbankcomputing.co.uk/software/sip/intro], which
is a tool used to create Python bindings for C and C++ libraries. You can navigate to the
download page on SIP website [http://www.riverbankcomputing.co.uk/software/sip/download],
choose the version according to your operating system, extract the download package and
install it using three commands:


$ tar -xvzf sip-4.xx.x.tar.gz
$ cd sip-4.xx.x
$ python configure.py
$ make
$ [sudo] make install









Install PyQt4


Now we can finally install PyQt4. Go to the PyQt4 download page [http://www.riverbankcomputing.co.uk/software/pyqt/download]
and download the PyQt4 version according to your platform. After these steps, all you need to do is extract the download
package and install PyQt4 using these commands:


$ tar -xvzf PyQt-plat-gpl-4.x.x.tar.gz
$ cd PyQt-plat-gpl-4.x.x
$ python configure.py --no-designer-plugin --qmake=/usr/bin/qmake-4.x # important, on Mac OS X don't use /usr/bin/qmake, specify the version!
$ make
$ [sudo] make install






Now you PyQt4 installed on your system. Happy hacking :)


For more information in specific platforms, check these links out:




		Installing PyQt on Mac OS X (Snow Leopard) [http://blog.oak-tree.us/index.php/2010/05/27/pyqt-snow-leopard]


		Installing PyQt on Windows [http://blog.oak-tree.us/index.php/2009/05/12/pyqt-windows]


		Installing PyQt on Linux (Ubuntu) [http://blog.oak-tree.us/index.php/2009/05/12/pyqt-linux]















          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

drivers/chrome.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Chrome WebDriver


Chrome WebDriver is provided by Selenium2. To use it, you need to install Selenium2 via pip:


$ [sudo] pip install selenium






It’s important to note that you also need to have Google Chrome installed in your machine.


Chrome can also be used from a custom path. To do this pass the executable path as a dictionary to the **kwargs argument. The dictionary should be set up with executable_path as the key and the value set to the path to the executable file.


from splinter import Browser
executable_path = {'executable_path':'</path/to/chrome>'}

browser = Browser('chrome', **executable_path)







Setting up Chrome WebDriver


In order to use Google Chrome [http://google.com/chrome] with Splinter, since we’re using Selenium 2.3.x,
you need to setup Chrome webdriver properly.





Mac OS X


The recommended way is by using Homebrew [http://mxcl.github.com/homebrew/]:


$ brew install chromedriver









Linux


Go to the download page on Chromium project [https://sites.google.com/a/chromium.org/chromedriver/downloads] and choose
the properly version for you Linux. Then extract the downloaded file in a
directory in the PATH (e.g. /usr/bin). You can also extract it to any
directory and add that directory to the PATH:



Linux 64bits


$ cd $HOME/Downloads
$ wget https://chromedriver.storage.googleapis.com/2.37/chromedriver_linux64.zip
$ unzip chromedriver_linux64.zip

$ mkdir -p $HOME/bin
$ mv chromedriver $HOME/bin
$ echo "export PATH=$PATH:$HOME/bin" >> $HOME/.bash_profile











Windows



Note: We don’t provide official support for Windows, but you can try it by yourself.



All you need to do is go to download page on Selenium project [https://sites.google.com/a/chromium.org/chromedriver/downloads] and choose
“ChromeDriver server for win”. Your browser will download a zip file, extract it and add the .exe file to your PATH.


If you don’t know how to add an executable to the PATH on Windows, check these link out:



		Environment variables [http://msdn.microsoft.com/en-us/library/ms682653.aspx]


		How to manage environment variables in Windows XP [http://support.microsoft.com/kb/310519]


		How to manage environment variables in Windows 8 & 10 [https://www.computerhope.com/issues/ch000549.htm]








Using Chrome WebDriver


To use the Chrome driver, all you need to do is pass the string chrome when you create
the Browser instance:


from splinter import Browser
browser = Browser('chrome')






Note: if you don’t provide any driver to Browser function, firefox will be used.


Note: if you have trouble with $HOME/.bash_profile, you can try $HOME/.bashrc.





Using headless option for Chrome


Starting with Chrome 59, we can run Chrome as a headless browser.
Make sure you read google developers updates [https://developers.google.com/web/updates/2017/05/nic59#headless]


from splinter import Browser
browser = Browser('chrome', headless=True)









Using incognito option for Chrome


We can run Chrome as a incognito browser.


from splinter import Browser
browser = Browser('chrome', incognito=True)









Using emulation mode in Chrome


Chrome options can be passed to customize Chrome’s behaviour; it is then possible to leverage the
experimental emulation mode.


from selenium import webdriver
from splinter import Browser

mobile_emulation = {"deviceName": "Google Nexus 5"}
chrome_options = webdriver.ChromeOptions()
chrome_options.add_experimental_option("mobileEmulation",
                                       mobile_emulation)
browser = Browser('chrome', options=chrome_options)






refer to chrome driver documentation [https://sites.google.com/a/chromium.org/chromedriver/mobile-emulation]





API docs



		
class splinter.driver.webdriver.chrome.WebDriver(options=None, user_agent=None, wait_time=2, fullscreen=False, incognito=False, headless=False, **kwargs)


		
		
attach_file(name, value)


		Fill the field identified by name with the content specified by value.









		
back()


		Back to the last URL in the browsing history.


If there is no URL to back, this method does nothing.









		
check(name)


		Checks a checkbox by its name.


Example:


>>> browser.check("agree-with-terms")






If you call browser.check n times, the checkbox keeps checked, it never get unchecked.


To unckech a checkbox, take a look in the uncheck method.









		
choose(name, value)


		Chooses a value in a radio buttons group.


Suppose you have the two radio buttons in a page, with the name gender and values ‘F’ and ‘M’.
If you use the choose method the following way:


>>> browser.choose('gender', 'F')






Then you’re choosing the female gender.









		
click_link_by_href(href)


		Clicks in a link by its href attribute.









		
click_link_by_id(id)


		Clicks in a link by id.









		
click_link_by_partial_href(partial_href)


		Clicks in a link by looking for partial content of href attribute.









		
click_link_by_partial_text(partial_text)


		Clicks in a link by partial content of its text.









		
click_link_by_text(text)


		Clicks in a link by its text.









		
cookies


		A CookieManager instance.


For more details, check the cookies manipulation section.









		
evaluate_script(script)


		Similar to execute_script method.


Executes javascript in the browser and returns the value of the expression.



		e.g.: ::


		>>> assert 4 == browser.evaluate_script('2 + 2')



















		
execute_script(script)


		Executes a given JavaScript in the browser.



		e.g.: ::


		>>> browser.execute_script('document.getElementById("body").innerHTML = "<p>Hello world!</p>"')



















		
fill(name, value)


		Fill the field identified by name with the content specified by value.









		
fill_form(field_values, form_id=None, name=None)


		Fill the fields identified by name with the content specified by value in a dict.


Currently, fill_form supports the following fields: text, password, textarea, checkbox,
radio and select.


Checkboxes should be specified as a boolean in the dict.









		
find_by_css(css_selector)


		Returns an instance of ElementList,
using a CSS selector to query the current page content.









		
find_by_id(id)


		Finds an element in current page by its id.


Even when only one element is find, this method returns an instance of
ElementList









		
find_by_name(name)


		Finds elements in current page by their name.


Returns an instance of ElementList.









		
find_by_tag(tag)


		Find all elements of a given tag in current page.


Returns an instance of ElementList









		
find_by_text(text)


		Finds elements in current page by their text.


Returns an instance of ElementList









		
find_by_value(value)


		Finds elements in current page by their value.


Returns an instance of ElementList









		
find_by_xpath(xpath, original_find=None, original_query=None)


		Returns an instance of ElementList,
using a xpath selector to query the current page content.









		
find_link_by_href(href)


		Find all elements of a given tag in current page.


Returns an instance of ElementList









		
find_link_by_partial_href(partial_href)


		Find links by looking for a partial str in their href attribute.


Returns an instance of ElementList









		
find_link_by_partial_text(partial_text)


		Find links by looking for a partial str in their text.


Returns an instance of ElementList









		
find_link_by_text(text)


		Find links querying for their text.


Returns an instance of ElementList









		
find_option_by_text(text)


		Finds <option> elements by their text.


Returns an instance of ElementList









		
find_option_by_value(value)


		Finds <option> elements by their value.


Returns an instance of ElementList









		
forward()


		Forward to the next URL in the browsing history.


If there is no URL to forward, this method does nothing.









		
get_alert()


		Changes the context for working with alerts and prompts.


For more details, check the docs about iframes, alerts and prompts









		
get_iframe(*args, **kwds)


		Changes the context for working with iframes.


For more details, check the docs about iframes, alerts and prompts









		
html


		Source of current page.









		
is_element_not_present_by_css(css_selector, wait_time=None)


		Verify if the element is not present in the current page by css, and wait the specified time
in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_id(id, wait_time=None)


		Verify if the element is present in the current page by id,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_name(name, wait_time=None)


		Verify if the element is not present in the current page by name,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_tag(tag, wait_time=None)


		Verify if the element is not present in the current page by tag,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_text(text, wait_time=None)


		Verify if the element is not present in the current page by text,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_value(value, wait_time=None)


		Verify if the element is not present in the current page by value,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_xpath(xpath, wait_time=None)


		Verify if the element is not present in the current page by xpath,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_present_by_css(css_selector, wait_time=None)


		Verify if the element is present in the current page by css, and wait the specified
time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_id(id, wait_time=None)


		Verify if the element is present in the current page by id,
and wait the specified time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_name(name, wait_time=None)


		Verify if the element is present in the current page by name,
and wait the specified time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_tag(tag, wait_time=None)


		Verify if the element is present in the current page by tag,
and wait the specified time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_text(text, wait_time=None)


		Verify if the element is present in the current page by text,
and wait the specified time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_value(value, wait_time=None)


		Verify if the element is present in the current page by value,
and wait the specified time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_xpath(xpath, wait_time=None)


		Verify if the element is present in the current page by xpath, and wait the specified
time in wait_time.


Returns True if the element is present and False if is not present.









		
is_text_present(text, wait_time=None)


		Searchs for text in the browser and wait the seconds specified in wait_time.


Returns True if finds a match for the text and False if not.









		
quit()


		Quits the browser, closing its windows (if it has one).


After quit the browser, you can’t use it anymore.









		
reload()


		Revisits the current URL









		
screenshot(name=None, suffix='.png')


		Takes a screenshot of the current page and saves it locally.









		
select(name, value)


		Selects an <option> element in an <select> element using the name of the <select> and
the value of the <option>.


Example:


>>> browser.select("state", "NY")













		
title


		Title of current page.









		
type(name, value, slowly=False)


		Types the value in the field identified by name.


It’s useful to test javascript events like keyPress, keyUp, keyDown, etc.


If slowly is True, this function returns an iterator which will type one character per iteration.









		
uncheck(name)


		Unchecks a checkbox by its name.


Example:


>>> browser.uncheck("send-me-emails")






If you call brower.uncheck n times, the checkbox keeps unchecked, it never get checked.


To check a checkbox, take a look in the check method.









		
url


		URL of current page.









		
visit(url)


		Visits a given URL.


The url parameter is a string.




















          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

drivers/firefox.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Firefox WebDriver


Firefox WebDriver is provided by Selenium 2.0. To use it, you need to install Selenium 2.0 via pip:


$ [sudo] pip install selenium






It’s important to note that you also need to have Firefox [http://firefox.com] and geckodriver [https://github.com/mozilla/geckodriver/releases] installed in your machine and available on PATH environment variable.
Once you have it installed, there is nothing you have to do, just use it :)



Using Firefox WebDriver


To use the Firefox driver, all you need to do is pass the string firefox when you create
the Browser instance:


from splinter import Browser
browser = Browser('firefox')






Note: if you don’t provide any driver to Browser function, firefox will be used.





Using headless option for Firefox


Starting with Firefox 55, we can run Firefox as a headless browser in Linux.


from splinter import Browser
browser = Browser('firefox', headless=True)









Using incognito option for Firefox


We can run Firefox as a private browser.


from splinter import Browser
browser = Browser('firefox', incognito=True)









How to use a specific profile for Firefox


You can specify a Firefox profile [http://support.mozilla.com/en-US/kb/Profiles] for using on Browser function
using the profile keyword (passing the name of the profile as a str instance):


from splinter import Browser
browser = Browser('firefox', profile='my_profile')






If you don’t specify a profile, a new temporary profile will be created (and deleted when you close the browser).





How to use specific extensions for Firefox


An extension for firefox is a .xpi archive. To use an extension in Firefox webdriver profile you need to give the path of the extension, using the extensions keyword (passing the extensions as a list instance):


from splinter import Browser
browser = Browser('firefox', extensions=['extension1.xpi', 'extension2.xpi'])






If you give an extension, after you close the browser, the extension will be deleted from the profile, even if is not a temporary one.





How to use selenium capabilities for Firefox


from splinter import Browser
browser = Browser('firefox', capabilities={'acceptSslCerts': True})






You can pass any selenium read-write DesiredCapabilities parameters [https://code.google.com/p/selenium/wiki/DesiredCapabilities#Read-write_capabilities] for Firefox.





API docs



		
class splinter.driver.webdriver.firefox.WebDriver(profile=None, extensions=None, user_agent=None, profile_preferences=None, fullscreen=False, wait_time=2, timeout=90, capabilities=None, headless=False, incognito=False, **kwargs)


		
		
attach_file(name, value)


		Fill the field identified by name with the content specified by value.









		
back()


		Back to the last URL in the browsing history.


If there is no URL to back, this method does nothing.









		
check(name)


		Checks a checkbox by its name.


Example:


>>> browser.check("agree-with-terms")






If you call browser.check n times, the checkbox keeps checked, it never get unchecked.


To unckech a checkbox, take a look in the uncheck method.









		
choose(name, value)


		Chooses a value in a radio buttons group.


Suppose you have the two radio buttons in a page, with the name gender and values ‘F’ and ‘M’.
If you use the choose method the following way:


>>> browser.choose('gender', 'F')






Then you’re choosing the female gender.









		
click_link_by_href(href)


		Clicks in a link by its href attribute.









		
click_link_by_id(id)


		Clicks in a link by id.









		
click_link_by_partial_href(partial_href)


		Clicks in a link by looking for partial content of href attribute.









		
click_link_by_partial_text(partial_text)


		Clicks in a link by partial content of its text.









		
click_link_by_text(text)


		Clicks in a link by its text.









		
cookies


		A CookieManager instance.


For more details, check the cookies manipulation section.









		
evaluate_script(script)


		Similar to execute_script method.


Executes javascript in the browser and returns the value of the expression.



		e.g.: ::


		>>> assert 4 == browser.evaluate_script('2 + 2')



















		
execute_script(script)


		Executes a given JavaScript in the browser.



		e.g.: ::


		>>> browser.execute_script('document.getElementById("body").innerHTML = "<p>Hello world!</p>"')



















		
fill(name, value)


		Fill the field identified by name with the content specified by value.









		
fill_form(field_values, form_id=None, name=None)


		Fill the fields identified by name with the content specified by value in a dict.


Currently, fill_form supports the following fields: text, password, textarea, checkbox,
radio and select.


Checkboxes should be specified as a boolean in the dict.









		
find_by_css(css_selector)


		Returns an instance of ElementList,
using a CSS selector to query the current page content.









		
find_by_id(id)


		Finds an element in current page by its id.


Even when only one element is find, this method returns an instance of
ElementList









		
find_by_name(name)


		Finds elements in current page by their name.


Returns an instance of ElementList.









		
find_by_tag(tag)


		Find all elements of a given tag in current page.


Returns an instance of ElementList









		
find_by_text(text)


		Finds elements in current page by their text.


Returns an instance of ElementList









		
find_by_value(value)


		Finds elements in current page by their value.


Returns an instance of ElementList









		
find_by_xpath(xpath, original_find=None, original_query=None)


		Returns an instance of ElementList,
using a xpath selector to query the current page content.









		
find_link_by_href(href)


		Find all elements of a given tag in current page.


Returns an instance of ElementList









		
find_link_by_partial_href(partial_href)


		Find links by looking for a partial str in their href attribute.


Returns an instance of ElementList









		
find_link_by_partial_text(partial_text)


		Find links by looking for a partial str in their text.


Returns an instance of ElementList









		
find_link_by_text(text)


		Find links querying for their text.


Returns an instance of ElementList









		
find_option_by_text(text)


		Finds <option> elements by their text.


Returns an instance of ElementList









		
find_option_by_value(value)


		Finds <option> elements by their value.


Returns an instance of ElementList









		
forward()


		Forward to the next URL in the browsing history.


If there is no URL to forward, this method does nothing.









		
get_alert()


		Changes the context for working with alerts and prompts.


For more details, check the docs about iframes, alerts and prompts









		
get_iframe(*args, **kwds)


		Changes the context for working with iframes.


For more details, check the docs about iframes, alerts and prompts









		
html


		Source of current page.









		
is_element_not_present_by_css(css_selector, wait_time=None)


		Verify if the element is not present in the current page by css, and wait the specified time
in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_id(id, wait_time=None)


		Verify if the element is present in the current page by id,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_name(name, wait_time=None)


		Verify if the element is not present in the current page by name,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_tag(tag, wait_time=None)


		Verify if the element is not present in the current page by tag,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_text(text, wait_time=None)


		Verify if the element is not present in the current page by text,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_value(value, wait_time=None)


		Verify if the element is not present in the current page by value,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_xpath(xpath, wait_time=None)


		Verify if the element is not present in the current page by xpath,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_present_by_css(css_selector, wait_time=None)


		Verify if the element is present in the current page by css, and wait the specified
time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_id(id, wait_time=None)


		Verify if the element is present in the current page by id,
and wait the specified time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_name(name, wait_time=None)


		Verify if the element is present in the current page by name,
and wait the specified time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_tag(tag, wait_time=None)


		Verify if the element is present in the current page by tag,
and wait the specified time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_text(text, wait_time=None)


		Verify if the element is present in the current page by text,
and wait the specified time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_value(value, wait_time=None)


		Verify if the element is present in the current page by value,
and wait the specified time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_xpath(xpath, wait_time=None)


		Verify if the element is present in the current page by xpath, and wait the specified
time in wait_time.


Returns True if the element is present and False if is not present.









		
is_text_present(text, wait_time=None)


		Searchs for text in the browser and wait the seconds specified in wait_time.


Returns True if finds a match for the text and False if not.









		
quit()


		Quits the browser, closing its windows (if it has one).


After quit the browser, you can’t use it anymore.









		
reload()


		Revisits the current URL









		
screenshot(name=None, suffix='.png')


		Takes a screenshot of the current page and saves it locally.









		
select(name, value)


		Selects an <option> element in an <select> element using the name of the <select> and
the value of the <option>.


Example:


>>> browser.select("state", "NY")













		
title


		Title of current page.









		
type(name, value, slowly=False)


		Types the value in the field identified by name.


It’s useful to test javascript events like keyPress, keyUp, keyDown, etc.


If slowly is True, this function returns an iterator which will type one character per iteration.









		
uncheck(name)


		Unchecks a checkbox by its name.


Example:


>>> browser.uncheck("send-me-emails")






If you call brower.uncheck n times, the checkbox keeps unchecked, it never get checked.


To check a checkbox, take a look in the check method.









		
url


		URL of current page.









		
visit(url)


		Visits a given URL.


The url parameter is a string.




















          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.2.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
what’s new in splinter 0.2?



Features



		cookies manipulation


		find elements within an element


		improvements in ElementList








Backward incompatible changes



		you should update your selenium to 2.1.0 version and your chrome driver. See more in suport to new chrome driver











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

drivers/zope.testbrowser.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
zope.testbrowser


To use the zope.testbrowser driver, you need to install zope.testbrowser [http://pypi.python.org/pypi/zope.testbrowser], lxml [https://pypi.python.org/pypi/lxml] and cssselect [http://pypi.python.org/pypi/cssselect]. You can install all of them in one step by running:


$ pip install splinter[zope.testbrowser]







Using zope.testbrowser


To use the zope.testbrowser driver, all you need to do is pass the string zope.testbrowser when you create
the Browser instance:


from splinter import Browser
browser = Browser('zope.testbrowser')






By default zope.testbrowser respects any robots.txt preventing access to a lot of sites. If you want to circumvent
this you can call


browser = Browser('zope.testbrowser', ignore_robots=True)






Note: if you don’t provide any driver to Browser function, firefox will be used.





API docs








          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.7.2.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.7.2?



		fix Python 3 compatibility, improving enconding/decoding in browser.title and browser.html - #380 [https://github.com/cobrateam/splinter/pull/380]









          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

_static/comment-close.png





news/0.4.2.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.4.2?



Features



		added new browser method form_fill to fill all form fields in one command








Bugfixes



		fixed a bug in setup.py











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

_static/up.png





news/0.4.3.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.4.3?



Features



		Updated selenium to 2.14











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.1.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
what’s new in splinter 0.1?



Features



		capability to handle HTTP errors (using an exception) in Selenium drivers (Firefox and Chrome)


		capability to work with HTTP status code in Selenium drivers (Firefox and Chrome)


		browsing history (back and forward methods in Browser class)


		improvements in documentation








Bugfixes



		fixed Chrome driver instability


		fixed Browser.choose behaviour


		fixed WebDriver silenting routine








Backward incompatible changes



		you should update your selenium to 2.0rc2 version











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.7.1.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.7.1?



		support Selenium 2.45.0.


		Django Client supports **kwargs parameters on constructor.


		Django Client handle redirects.


		ZopeTestBrowser has the ignore_robots parameter.









          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

_static/down-pressed.png





news/0.4.4.1.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.4.4.1?



Bugfixes



		update selenium version, to work with latest Firefox version











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

_static/ajax-loader.gif





news/0.1.1.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
what’s new in splinter 0.1.1?



		compability with Firefox 5









          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

_static/minus.png





news/0.7.3.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.7.3?



		support selenium 2.47.1


		add select_by_text method


		add find_by_text, is_element_present_by_text, is_element_not_present_by_text


		improved support to python 3


		cookie support for remote webdriver


		get status_code by lazy evaluation. It should minimize the proxy and duplicated requests problems






django client



		improved is_text_present performance. djangoclient doesn’t have to wait for load


		support django 1.7 and 1.8


		fixed several bugs with python3 compatibility


		added default extra headers: SERVER_PORT, SERVER_NAME and User-Agent


		support custom headers











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.4.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.4?



Features



		support for double click, right click, drag and drop and other mouse interactions
(only Chrome driver)


		support for Python 2.5








Documentation improvements



		improved API docs


		added docs for is_text_present method


		added API docs for is_element_present_by_* methods


		added docs for mouse interactions








Deprecations



		simplified name of Selenium drivers, they’re just chrome and firefox now (instead
of webdriver.chrome and webdriver.firefox). The older names were deprecated.


		changed name of mouseover and mouseout methods to mouse_over and mouse_out








IMPORTANT


The following deprecated methods will be removed in the next splinter release (0.5) from Browser classes:



		fill_in


		find_by_css_selector


		is_element_present_by_css_selector


		is_element_not_present_by_css_selector











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

_static/plus.png





_static/comment-bright.png





_static/file.png





news/0.8.0.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.8.0?



		add support for Firefox incognito mode (https://github.com/cobrateam/splinter/pull/578)


		allow return value for execute_script to be returned (https://github.com/cobrateam/splinter/pull/585)


		chrome_options parameter renamed to options (https://github.com/cobrateam/splinter/pull/590)


		removed deprecated mouseover method


		raises NotImplementedError on status_code in drivers based on webdriver


		phantomjs is deprecated (this driver will be removed in 0.9.0)









          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.0.2.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
what’s new in splinter 0.0.2?



Features



		fill instead of fill_in to fill inputs


		support to google chrome selenium 2 driver


		form interactions now support select


		issue #11: improve find’s methods to return all/first/last elements





now finder methods (find_by_name, find_by_css_selector, find_by_tag, find_by_id, find_by_xpath) returns a ElementList object that contains a list of all found elements:


browser.find_by_name('name')






.first - to find first element


browser.find_by_name('name').first






.last - to find last element


browser.find_by_name('name').last






And additionally, using index


browser.find_by_name('name')[1]






An id should be unique in a web page, so find_by_id() method always returns a list with a single element.





Backward incompatible changes



		issue #24 remove save_and_open_page method from splinter api. This feature is out of splinter’s scope, hence should be implemented as an external package.


		now finder methods (find_by_name, find_by_css_selector, find_by_tag, find_by_id, find_by_xpath) returns a list with elements, to get the first element founded use first attribute





browser.find_by_name('name').first












          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

_static/comment.png





news/0.7.0.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.7.0?



Features



		Support for mouse_over, mouse_out in Firefox driver.


		New flask test client driver.


		Better support for browser windows.


		Support for custom headers in PhantomJS driver.


		Added webdriver fullscreen support.


		Added a way to wait until element is visible.








Bugfix



		Support encoding in django client and zopetestbrowser drivers.


		Browser.cookies.all() are more consistent and added a verbose mode.











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

_static/up-pressed.png





api/driver-and-element-api.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Browser



		
splinter.browser.Browser(driver_name='firefox', *args, **kwargs)


		Returns a driver instance for the given name.


When working with firefox, it’s possible to provide a profile name
and a list of extensions.


If you don’t provide any driver_name, then firefox will be used.


If there is no driver registered with the provided driver_name, this
function will raise a splinter.exceptions.DriverNotFoundError
exception.











DriverAPI



		
class splinter.driver.DriverAPI


		Basic driver API class.



		
back()


		Back to the last URL in the browsing history.


If there is no URL to back, this method does nothing.









		
check(name)


		Checks a checkbox by its name.


Example:


>>> browser.check("agree-with-terms")






If you call browser.check n times, the checkbox keeps checked, it never get unchecked.


To unckech a checkbox, take a look in the uncheck method.









		
choose(name, value)


		Chooses a value in a radio buttons group.


Suppose you have the two radio buttons in a page, with the name gender and values ‘F’ and ‘M’.
If you use the choose method the following way:


>>> browser.choose('gender', 'F')






Then you’re choosing the female gender.









		
click_link_by_href(href)


		Clicks in a link by its href attribute.









		
click_link_by_id(id)


		Clicks in a link by id.









		
click_link_by_partial_href(partial_href)


		Clicks in a link by looking for partial content of href attribute.









		
click_link_by_partial_text(partial_text)


		Clicks in a link by partial content of its text.









		
click_link_by_text(text)


		Clicks in a link by its text.









		
cookies


		A CookieManager instance.


For more details, check the cookies manipulation section.









		
evaluate_script(script)


		Similar to execute_script method.


Executes javascript in the browser and returns the value of the expression.



		e.g.: ::


		>>> assert 4 == browser.evaluate_script('2 + 2')



















		
execute_script(script)


		Executes a given JavaScript in the browser.



		e.g.: ::


		>>> browser.execute_script('document.getElementById("body").innerHTML = "<p>Hello world!</p>"')



















		
fill(name, value)


		Fill the field identified by name with the content specified by value.









		
fill_form(field_values, form_id=None, name=None)


		Fill the fields identified by name with the content specified by value in a dict.


Currently, fill_form supports the following fields: text, password, textarea, checkbox,
radio and select.


Checkboxes should be specified as a boolean in the dict.









		
find_by_css(css_selector)


		Returns an instance of ElementList,
using a CSS selector to query the current page content.









		
find_by_id(id)


		Finds an element in current page by its id.


Even when only one element is find, this method returns an instance of
ElementList









		
find_by_name(name)


		Finds elements in current page by their name.


Returns an instance of ElementList.









		
find_by_tag(tag)


		Find all elements of a given tag in current page.


Returns an instance of ElementList









		
find_by_text(text)


		Finds elements in current page by their text.


Returns an instance of ElementList









		
find_by_value(value)


		Finds elements in current page by their value.


Returns an instance of ElementList









		
find_by_xpath(xpath)


		Returns an instance of ElementList,
using a xpath selector to query the current page content.









		
find_link_by_href(href)


		Find all elements of a given tag in current page.


Returns an instance of ElementList









		
find_link_by_partial_href(partial_href)


		Find links by looking for a partial str in their href attribute.


Returns an instance of ElementList









		
find_link_by_partial_text(partial_text)


		Find links by looking for a partial str in their text.


Returns an instance of ElementList









		
find_link_by_text(text)


		Find links querying for their text.


Returns an instance of ElementList









		
find_option_by_text(text)


		Finds <option> elements by their text.


Returns an instance of ElementList









		
find_option_by_value(value)


		Finds <option> elements by their value.


Returns an instance of ElementList









		
forward()


		Forward to the next URL in the browsing history.


If there is no URL to forward, this method does nothing.









		
get_alert()


		Changes the context for working with alerts and prompts.


For more details, check the docs about iframes, alerts and prompts









		
get_iframe(name)


		Changes the context for working with iframes.


For more details, check the docs about iframes, alerts and prompts









		
html


		Source of current page.









		
is_element_not_present_by_css(css_selector, wait_time=None)


		Verify if the element is not present in the current page by css, and wait the specified time
in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_id(id, wait_time=None)


		Verify if the element is present in the current page by id,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_name(name, wait_time=None)


		Verify if the element is not present in the current page by name,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_tag(tag, wait_time=None)


		Verify if the element is not present in the current page by tag,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_text(text, wait_time=None)


		Verify if the element is not present in the current page by text,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_value(value, wait_time=None)


		Verify if the element is not present in the current page by value,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_not_present_by_xpath(xpath, wait_time=None)


		Verify if the element is not present in the current page by xpath,
and wait the specified time in wait_time.


Returns True if the element is not present and False if is present.









		
is_element_present_by_css(css_selector, wait_time=None)


		Verify if the element is present in the current page by css, and wait the specified
time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_id(id, wait_time=None)


		Verify if the element is present in the current page by id,
and wait the specified time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_name(name, wait_time=None)


		Verify if the element is present in the current page by name,
and wait the specified time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_tag(tag, wait_time=None)


		Verify if the element is present in the current page by tag,
and wait the specified time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_text(text, wait_time=None)


		Verify if the element is present in the current page by text,
and wait the specified time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_value(value, wait_time=None)


		Verify if the element is present in the current page by value,
and wait the specified time in wait_time.


Returns True if the element is present and False if is not present.









		
is_element_present_by_xpath(xpath, wait_time=None)


		Verify if the element is present in the current page by xpath, and wait the specified
time in wait_time.


Returns True if the element is present and False if is not present.









		
is_text_present(text, wait_time=None)


		Searchs for text in the browser and wait the seconds specified in wait_time.


Returns True if finds a match for the text and False if not.









		
quit()


		Quits the browser, closing its windows (if it has one).


After quit the browser, you can’t use it anymore.









		
reload()


		Revisits the current URL









		
screenshot(name=None, suffix=None)


		Takes a screenshot of the current page and saves it locally.









		
select(name, value)


		Selects an <option> element in an <select> element using the name of the <select> and
the value of the <option>.


Example:


>>> browser.select("state", "NY")













		
title


		Title of current page.









		
type(name, value, slowly=False)


		Types the value in the field identified by name.


It’s useful to test javascript events like keyPress, keyUp, keyDown, etc.


If slowly is True, this function returns an iterator which will type one character per iteration.









		
uncheck(name)


		Unchecks a checkbox by its name.


Example:


>>> browser.uncheck("send-me-emails")






If you call brower.uncheck n times, the checkbox keeps unchecked, it never get checked.


To check a checkbox, take a look in the check method.









		
url


		URL of current page.









		
visit(url)


		Visits a given URL.


The url parameter is a string.

















ElementAPI



		
class splinter.driver.ElementAPI


		Basic element API class.


Any element in the page can be represented as an instance of ElementAPI.


Once you have an instance, you can easily access attributes like a dict:


>>> element = browser.find_by_id("link-logo").first
>>> assert element['href'] == 'https://splinter.readthedocs.io'






You can also interact with the instance using the methods and properties listed below.



		
check()


		Checks the element, if it’s “checkable” (e.g.: a checkbox).


If the element is already checked, this method does nothing. For unchecking
elements, take a loot in the uncheck method.









		
checked


		Boolean property that says if the element is checked or not.


Example:


>>> element.check()
>>> assert element.checked
>>> element.uncheck()
>>> assert not element.checked













		
clear()


		Reset the field value.









		
click()


		Clicks in the element.









		
fill(value)


		Fill the field with the content specified by value.









		
has_class(class_name)


		Indicates whether the element has the given class.









		
mouse_out()


		Moves the mouse away from the element.









		
mouse_over()


		Puts the mouse over the element.









		
select(value, slowly=False)


		Selects an <option> element in the element using the value of the <option>.


Example:


>>> element..select("NY")













		
text


		String of all of the text within the element.  HTML tags are stripped.









		
type(value, slowly=False)


		Types the value in the field.


It’s useful to test javascript events like keyPress, keyUp, keyDown, etc.


If slowly is True, this function returns an iterator which will type one character per iteration.









		
uncheck()


		Unchecks the element, if it’s “checkable” (e.g.: a checkbox).


If the element is already unchecked, this method does nothing. For checking
elements, take a loot in the check method.









		
value


		Value of the element, usually a form element









		
visible


		Boolean property that says if the element is visible or hidden in the current page.


















          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

api/cookie-manager.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
CookieManager



		
class splinter.cookie_manager.CookieManagerAPI


		An API that specifies how a splinter driver deals with cookies.


You can add cookies using the add method,
and remove one or all cookies using
the delete method.


A CookieManager acts like a dict, so you can access the value of a
cookie through the [] operator, passing the cookie identifier:


>>> cookie_manager.add({'name': 'Tony'})
>>> assert cookie_manager['name'] == 'Tony'







		
add(cookies)


		Adds a cookie.


The cookie parameter is a dict where each key is an identifier
for the cookie value (like any dict).


Example of use:


>>> cookie_manager.add({'name': 'Tony'})













		
all(verbose=False)


		Returns all of the cookies.



Note: If you’re using any webdriver and want more info about
the cookie, set the verbose parameter to True (in other
drivers, it won’t make any difference). In this case, this method
will return a list of dicts, each with one cookie’s info.



Examples:


>>> cookie_manager.add({'name': 'Tony'})
>>> cookie_manager.all()
[{'name': 'Tony'}]













		
delete(*cookies)


		Deletes one or more cookies. You can pass all the cookies identifier
that you want to delete.


If none identifier is provided, all cookies are deleted.


Examples:


>>> cookie_manager.delete() # deletes all cookies
>>> cookie_manager.delete('name', 'birthday',
                          'favorite_color') # deletes these three cookies
>>> cookie_manager.delete('name') # deletes one cookie






















          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

_static/down.png





api/request-handling.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Request handling



		
class splinter.request_handler.status_code.StatusCode(status_code, reason)


		
		
code = None


		Code of the response (example: 200)









		
is_success()


		Returns True if the response was succeed, otherwise, returns False.









		
reason = None


		A message for the response (example: Success)


















          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

api/exceptions.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
Exceptions



		
class splinter.exceptions.DriverNotFoundError


		Exception raised when a driver is not found.


Example:


>>> from splinter import Browser
>>> b = Browser('unknown driver') # raises DriverNotFoundError













		
class splinter.exceptions.ElementDoesNotExist


		Exception raised when an element is not found in the page.


The exception is raised only when someone tries to access the element,
not when the driver is finding it.


Example:


>>> elements = browser.find_by_id('unknown-id') # returns an empty list
>>> elements[0] # raises ElementDoesNotExist
















          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

api/index.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
API Documentation


Welcome to the Splinter API documentation! Check what’s inside:




		Browser


		DriverAPI


		ElementAPI


		CookieManager


		ElementList


		Request handling


		Exceptions











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

api/element-list.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
ElementList



		
class splinter.element_list.ElementList(list, driver=None, find_by=None, query=None)


		Bases: list


List of elements. Each member of the list is (usually) an instance
of ElementAPI.


Beyond the traditional list methods, the ElementList provides some
other methods, listed below.


There is a peculiar behavior on ElementList: you never get an
IndexError. Instead, you can an ElementDoesNotExist exception when trying to
access an inexistent item in the list:


>>> element_list = ElementList([])
>>> element_list[0] # raises ElementDoesNotExist







		
first


		An alias to the first element of the list:


>>> assert element_list[0] == element_list.first













		
is_empty()


		Returns True if the list is empty.









		
last


		An alias to the last element of the list:


>>> assert element_list[-1] == element_list.last






















          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.7.7.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.7.7?



		fill_form more robust by requiring form ID


		support firefox `headless mode


		handle exceptions when calling quit on webdriver









          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.0.1.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
what’s new in splinter 0.0.1?



Features



		support to firefox selenium 2 driver


		support to zope test browser


		navigating with Browser.visit


		get the title of the visited page


		get the html content of the visited page


		visited page’s url can be accessed by the url attribute


		finding first element by tag, xpath, css selector, name and id


		find first link by xpath or text


		interacting with forms: text input, file, radio and check button


		verifying if element is visible or invisible


		executing and evaluating javascript


		debug with save and open page











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

news/0.7.4.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Splinter 0.8.0 documentation »

 
      


    


    
      
          
            
  
whats’s new in splinter 0.7.4?



		support Selenium 2.53.6


		find_by_text support quotes (#420 [https://github.com/cobrateam/splinter/pull/420]).


		Selenium capabilities for Firefox driver
(#417 [https://github.com/cobrateam/splinter/pull/417]).


		multi-select support for Django and Flask
(#443 [https://github.com/cobrateam/splinter/pull/443]).


		custom headers support to Flask
(#444 [https://github.com/cobrateam/splinter/pull/444]).


		add in operation for cookies
(#445 [https://github.com/cobrateam/splinter/pull/445]).


		Support for is_element_present_by_* in non-javascript drivers
(#463 [https://github.com/cobrateam/splinter/pull/463]).


		incognito mode for Google Chrome
(#465 [https://github.com/cobrateam/splinter/pull/465]).


		support for clearing text field types
(#479 [https://github.com/cobrateam/splinter/pull/479]).


		allow to pass a chrome Options instance to Browser
(``#494 <https://github.com/cobrateam/splinter/pull/494>`_).


		new click_link_by_id method
(#498 [https://github.com/cobrateam/splinter/pull/498]).






Backward incompatible changes



		RequestHandler is removed and the status use lazy evaluation.











          

      

      

    


    
        © Copyright 2014, cobrateam.
      Created using Sphinx 1.2.3.
    

  

